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Abstract
We study skew-orthogonal polynomials with respect to the weight function
exp[−2V (x)], with V (x) = ∑2d

K=1(uK/K)xK, u2d > 0, d > 0. A finite
subsequence of such skew-orthogonal polynomials arising in the study of
orthogonal and symplectic ensembles of random matrices satisfies a system
of differential-difference-deformation equation. The vectors formed by such
subsequence have the rank equal to the degree of the potential in the quaternion
sense. These solutions satisfy certain compatibility condition and hence admit
a simultaneous fundamental system of solutions.

PACS numbers: 02.30.Gp, 05.45.Mt

1. Introduction

1.1. Random matrices

The concept of ‘universality’ in random matrix theory and its various applications in real
physical systems have attracted both mathematicians and physicists in the last few decades
[1–14]. From mathematical point of view, the study of ‘universality’ in the energy level
correlations of random matrices requires a good understanding of the asymptotic behaviour of
certain families of polynomials. For example, unitary ensembles of random matrices require an
understanding of the large n behaviour of orthogonal (the one-matrix model) and bi-orthogonal
(the two-matrix model) polynomials, while orthogonal and symplectic ensembles require that
of the skew-orthogonal polynomials. The rich literature available on orthogonal polynomials
[6–18] and bi-orthogonal polynomials [19–23] has contributed a lot in our understanding of
the unitary ensembles. Our aim is to develop the theory of skew-orthogonal polynomials
[3–5, 24–27] so that we can have further insight into the one-matrix model for orthogonal and
symplectic ensembles of random matrices.

In this direction, previous experience with orthogonal and bi-orthogonal polynomials
arising in the two-matrix model makes us believe that perhaps the most logical and rigorous way
to study the asymptotic properties of these skew-orthogonal polynomials is to do the following:
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(1) first, we must look for a finite subsequence of skew-orthonormal vectors which will satisfy
a mutually compatible system of differential-difference-deformation equation. This requires
one to fix the ‘size’ or rank of this finite subsequence. The generalized Christoffel–Darboux
formula helps in this regard as it gives an indication of the number of terms near the so-called
‘Fermi-level’ which are actually required to study this system. (2) The next step is to look
for a mutually compatible system of differential-difference-deformation equation satisfied by
the finite subsequence of these vectors and hence find the so-called ‘fundamental solution’.
(3) Finally, to formulate a quaternion matrix Riemann–Hilbert problem and by applying the
steepest descent method, obtain the Plancherel–Rotach-type [15] formula for skew-orthogonal
polynomials.

Reference [5] achieved the first goal. In this paper, we try to address the second issue of
the existence of the ‘fundamental solution’ of a system of differential-difference-deformation
equation. One of the by-products is that we observe certain duality property between the skew-
orthonormal vectors of orthogonal and symplectic ensembles. (In fact, this justifies further
the use of skew-orthogonal polynomials to ordinary orthogonal polynomials in studying these
ensembles [6, 7, 28–36].) The third part, which is also the most crucial one, is not yet fully
understood.

We shall consider an ensemble of 2N -dimensional matrices H with probability distribution

Pβ,N(H) dH = 1

ZβN

exp[−[2 Tr V (H)]] dH, (1.1)

where the parameter β = 1 and 4 corresponds to the joint probability density for orthogonal
and symplectic ensembles of random matrices. The ‘potential’ V (x) is a polynomial of degree
2d with positive leading coefficient:

V (x) =
2d∑

K=1

uK

K
xK, u2d > 0, d > 0, (1.2)

where uK is called the deformation parameter. ZβN is the so-called ‘partition function’:

ZβN :=
∫

H∈M
(β)

2N

exp[−[2 Tr V (H)]] dH = N !
N−1∏
j=0

g
(β)

j , (1.3)

where M
(β)

2N is a set of all 2N × 2N real symmetric (β = 1) and quaternion real self-dual
(β = 4) matrices. dH is the standard Haar measure. g

(β)

j is the skew-normalization constant
for polynomials related to orthogonal and symplectic ensembles [24].

Remark on notation. Before entering the details of calculation, we must mention that
throughout this paper we have followed to a great extent notation used in [17, 19–21, 25].
Apart from having the advantage of using a well-established and compact notation, this strategy
will also highlight the striking similarity (as well as the difference) between skew-orthogonal
polynomials and their bi-orthogonal counterpart.

1.2. Skew-orthogonal polynomials: relevance in orthogonal and symplectic ensembles

Definition. For orthogonal and symplectic ensembles of random matrices, we define semi-
infinite vectors:

�(β)(x) = (
�

(β)

0

t
(x) · · · �(β)

n

t
(x) · · · )t , �̂(β)(x) = −�(β)t (x)Z, (1.4)

�(β)(x) = (
�

(β)

0

t
(x) · · · �(β)

n

t
(x) · · · )t , �̂(β)(x) = −�(β)t (x)Z, (1.5)
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where

�(4)
n (x) = �′(4)

n (x), �(1)
n (x) =

∫
R

�(1)
n (y)ε(x − y) dy. (1.6)

Each entry in these semi-infinite vectors is a (2 × 1) matrix:

�(β)
n (x) =

(
φ

(β)

2n (x)

φ
(β)

2n+1(x)

)
, �(β)

n (x) =
(

ψ
(β)

2n (x)

ψ
(β)

2n+1(x)

)
, (1.7)

where

φ(β)
n (x) = 1√

g
(β)
n

π(β)
n (x) exp[−V (x)] (1.8)

is the weighted skew-normalized polynomial (often called the quasi-polynomial) and

π(β)
n (x) =

n∑
k=0

c
(n,β)

k xk, c(n,β)
n = 1, n ∈ N (1.9)

is monic skew-orthogonal polynomial of order n.

Z =
(

0 1
−1 0

)
� · · · � (1.10)

is semi-infinite anti-symmetric block-diagonal matrix with Z2 = −1 and

ε(r) = |r|
r

(1.11)

is the step function. These vectors satisfy skew-orthonormality relation:(
�(β)

n , �̂(β)
m

) ≡
∫

R

�(β)
n (x)�̂(β)

m (x) dx = δnm

(
1 0
0 1

)
, n,m ∈ N. (1.12)

Remark. This definition differs from that of [3, 4, 26] for β = 4 by a factor of 2, which is
incorporated in the normalization constant.

These skew-orthonormal vectors form the necessary constituents of the kernel functions
required to study different statistical properties of orthogonal ensembles and symplectic
ensembles of random matrices. For example, the two-point correlation function can be
written in terms of the 2 × 2 kernel function [26, 27]:

σ
(β)

2 (x, y) =
(

S
(β)

2N (x, y) D
(β)

2N (x, y)

I
(β)

2N (x, y) + δ1,β

2 ε(x − y) S
(β)

2N (y, x)

)
, (1.13)

where δ is the Kronecker delta and

S
(β)

2N (x, y) = �̂(β)(x)
∏
N

�(β)(y), D
(β)

2N (x, y) = �̂(β)(x)
∏
N

�(β)(y), (1.14)

I
(β)

2N (x, y) = �̂(β)(x)
∏
N

�(β)(y), S
(β)

2N (y, x) = �̂(β)(x)
∏
N

�(β)(y). (1.15)

The level density is given by

ρ(β)(x, x) = S
(β)

2N (x, x). (1.16)

The matrix ∏
N

= diag(1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0) (1.17)

is formed by N (2 × 2) unit matrices (i.e., a unit matrix of size 2N in real space). In general,
this will be used to truncate semi-infinite matrices and, in the above case, the semi-infinite
vectors of the finite sum in equations (1.14) and (1.15).
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1.3. The generalized Christoffel–Darboux sum

Here, we present a summary of the main results of [5], where we studied the kernel function
S

(β)

2N (x, y). We expand (x�(β)(x)), (�(β)(x))
′
and (x�(β)(x))

′
in terms of �(β)(x) (and hence

introduce the semi-infinite matrices Q(β), P (β) and R(β), respectively):

x�(β)(x) = Q(β)�(β)(x), (1.18)

�(4)(x) = P (4)�(4)(x), x�(4)(x) = R(4)�(4)(x), (1.19)

2�(1)(x) = P (1)�(1)(x), 2x�(1)(x) = R(1)�(1)(x), (1.20)

where equation (1.20) is obtained by multiplying the above expansion by ε(y − x) and
integrating by parts. Here,

R(4) = P (4)Q(4), R(1) = Q(1)P (1). (1.21)

The matrices P (β),Q(β) and R(β) are quaternion matrices. For a nice introduction to the
subject, the reader is referred to the book by Professor M L Mehta [27].

Defining the quaternion matrix

R
(4)

(x) := R(4) − xP (4), R
(1)

(x) := 1
2 [R(1) − xP (1)], (1.22)

the generalized Christoffel–Darboux formula for the symplectic ensembles (β = 4) can be
written as

(x − y)S
(4)
2N(x, y) = −�̂(4)(x)

[
R

(4)
(x),

∏
N

]
�(4)(y). (1.23)

For orthogonal ensembles (β = 1), the generalized Christoffel–Darboux is given by

(y − x)S
(1)
2N(x, y) = −�̂(1)(x)

[
R

(1)
(y),

∏
N

]
�(1)(y). (1.24)

The generalized Christoffel–Darboux matrix
[
R

(β)
(x),

∏
N

]
in terms of the elements of the

quaternion matrix takes the form[
R

(β)
(x),

∏
N

]
=



0 0 0 R
(β)

2N−2d,2N(x) 0 0

0 0 0
.
.
.

. . . 0

0 0 0 R
(β)

2N−1,2N(x) · · · R
(β)

2N−1,2N+2d−1(x)

−R
(β)

2N,2N−2d (x) · · · −R
(β)

2N,2N−1(x) 0 0 0

0
. . .

.

.

.
.
.
. 0 0

0 0 −R
(β)

2N+2d−1,2N−1(x) 0 · · · 0


, N � d.

(1.25)

Here, we must point out that there is a small difference with the notation used in the
second part of [5], where we have used a matrix of size 2N + 2 to prove the ‘universality’ in
the Gaussian case. Also the definition of R(1) and P (1) differs by a factor of 2.
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1.4. Difference-differential-deformation equations

A quick glance at equation (1.25) reveals that the relevant vectors contributing to the correlation
function are φ

(β)

(2N−2d)(x) · · · φ(β)

(2N+2d−1)(x). This prompts us to define a finite subsequence (or
window: W � {N − d, . . . , N + d − 1}, N � d) of skew-orthogonal vectors of size 2d (in
the quaternionic sense), �

(β)

W (x) and �
(β)

W (x):

�
(β)

W (x) :=


φ

(β)

2N−2d(x)

...

φ
(β)

2N+2d−1(x)

 ≡


�

(β)

N−d(x)

...

�
(β)

N+d−1(x)

 , N � d, (1.26)

�
(β)

W (x) :=


ψ

(β)

2N−2d(x)

...

ψ
(β)

2N+2d−1(x)

 ≡


�

(β)

N−d(x)

...

�
(β)

N+d−1(x)

 , N � d, (1.27)

such that

�
(β)

W±j (x) := (
�

(β)t

N−d±j (x) · · · �(β)t

N+d−1±j (x)
)t

, ∀j ∈ N, (1.28)

�
(β)

W±j (x) := (
�

(β)t

N−d±j (x) · · · �(β)t

N+d−1±j (x)
)t

, ∀j ∈ N. (1.29)

The rank of the window is equal to the degree of the potential V (x) in the quaternionic space
and twice that of the degree of V (x) in the real space.

The recursion relations connecting the finite subsequence (or window) with the upper or
lower one are through the ladder operator

�
(4)
W+1(x) = A

(4)
N (x)�

(4)
W (x), �

(4)
W−1(x) = (

A
(4)
N−1(x)

)−1
�

(4)
W (x), (1.30)

�
(1)
W+1(x) = A

(1)
N (x)�

(1)
W (x), �

(1)
W−1(x) = (

A
(1)
N−1(x)

)−1
�

(1)
W (x), (1.31)

and

�
(4)
W+1(x) = B

(4)
N (x)�

(4)
W (x), �

(4)
W−1(x) = (

B
(4)
N−1(x)

)−1
�

(4)
W (x), (1.32)

�
(1)
W+1(x) = B

(1)
N (x)�

(1)
W (x), �

(1)
W−1(x) = (

B
(1)
N−1(x)

)−1
�

(1)
W (x). (1.33)

The vectors �
(β)

W (x) and �
(β)

W (x) also satisfy a system of ODEs:

d

dx
�

(4)
W (x) = D

(4)
N (x)�

(4)
W (x),

d

dx
�

(1)
W (x) = D

(1)
N (x)�

(1)
W (x),

d

dx
�

(4)
W (x) = D

(4)
N (x)�

(4)
W (x),

d

dx
�

(1)
W (x) = D

(1)
N (x)�

(1)
W (x).

(1.34)

Under an infinitesimal change of the deformation parameter uK (the coefficients of the
polynomial potential V (x)), these vectors satisfy a system of PDEs given by

∂

∂uK

�
(4)
W (x) = UN

K

(4)
(x)�

(4)
W (x),

∂

∂uK

�
(1)
W (x) = UN

K

(1)
(x)�

(1)
W (x),

∂

∂uK

�
(4)
W (x) = UN

K

(4)
(x)�

(4)
W (x),

∂

∂uK

�
(1)
W (x) = UN

K

(1)
(x)�

(1)
W (x).

(1.35)
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Thus, the finite subsequence of skew-orthogonal vectors satisfies a system of difference-
differential-deformation equation.

Remark. The two pairs of matrices D
(4)
N (x) and D

(1)
N (x) (similarly D

(1)
N (x) and D

(4)
N (x)),

UN
K

(4)
(x) and UN

K

(1)
(x) (similarly UN

K

(1)
(x) and UN

K

(4)
(x)) and A

(4)
N (x) and A

(1)
N (x) (similarly

B
(4)
N (x) and B

(1)
N (x)) are dual in the sense that they remain invariant under an interchange of

�(4)(x) �→ �(1)(x) and Q(4) �→ Q(1) (and similarly for �(1)(x) and �(4)(x)).

1.5. Compatibility

The existence of recursion relations, differential equations and deformation equations for
vectors arising in the orthogonal ensembles and symplectic ensembles of random matrices can
be viewed as just a projection of the semi-infinite functions �(β)(x) and �(β)(x) onto the finite
‘window’ �

(β)

W (x) and �
(β)

W (x), respectively. However, we may also consider these equations
as defining an overdetermined system of finite difference-differential-deformation equations
of the vector functions and see that these systems are compatible. This leads to the existence of
a fundamental matrix solution, denoted by �

(β)

[W ](x) and �
(β)

[W ](x) where all the column vectors
satisfy the above difference-differential-deformation equations simultaneously.

The compatibility of the deformation and difference equation with the differential equation
implies that the generalized monodromy of the operators

(
d

dx
− D

(β)

N (x)
)

and
(

d
dx

− D
(β)

N (x)
)

is invariant under uK deformations and shifts in N.

Outline of the paper. Section 2 deals with the properties of different finite band matrices related
to skew-orthogonal polynomials. In section 3, we study the system of PDEs arising from the
infinitesimal change of the deformation parameter uK . We derive the difference relations
satisfied by the finite subsequence of skew-orthogonal vectors in section 4. In section 5, we
derive the folding function which is used to project any given vector �

(β)
n (or �

(β)
n ) onto its

finite subsequence or window. In section 6, we obtain the folded deformation matrix, using
the results of section 5. The differential equation for skew-orthonormal vectors, using the
results obtained in section 6, is derived in section 7. In section 8, we discuss the existence of
the Cauchy-like transforms of the skew-orthogonal vectors of order n as the other solutions to
the differential-deformation-difference equations, for fairly large n. We prove compatibility
conditions for these difference-deformation-differential systems in section 9.

2. Recursion relations and finite band matrices

In this section, we will study in detail the different recursion relations satisfied by the skew-
orthonormal vectors. Here, we must note that unlike the orthogonal polynomials skew-
orthonormal vectors do not satisfy a three-term recursion relation and hence do not give birth
to the tri-diagonal Jacobi matrix.

Differentiating equations (1.19)–(1.20), we get

d

dx
�(β)(x) = P (β)�(β)(x),

d

dx
�(β)(x) = P (β)�(β)(x), β = 1, 4, (2.1)

x
d

dx
�(4)(x) = R(4)�(4)(x), x

d

dx
�(4)(x) = [R(4) − 1]�(4)(x), (2.2)

x
d

dx
�(1)(x) = R(1)�(1)(x), x

d

dx
�(1)(x) = [R(1) − 1]�(1)(x), (2.3)
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where �(β)(x) and �(β)(x) are the semi-infinite column vectors defined in equations (1.4) and
(1.5). This is equivalent to saying

[R(4) − xP (4)]�(4)(x) = 0, [R(4) − xP (4) − 1]�(4)(x) = 0, (2.4)

[R(1) − xP (1)]�(1)(x) = 0, [R(1) − xP (1) − 1]�(1)(x) = 0. (2.5)

These finite band matrices satisfy the following commutation relations:

[Q(β), P (β)] = 1, [R(β), P (β)] = P (β). (2.6)

Here, each entry is a 2 × 2 quaternion of the form

An,m :=
[

Ã2n,2m Ã2n,2m+1

Ã2n+1,2m Ã2n+1,2m+1

]
. (2.7)

Using
(
ψ(4)

n , ψ(4)
m

)
and

(
xψ(4)

n , ψ(4)
m

)
for β = 4, and replacing ψ(4)(x) by φ(1)(x) for

β = 1, we get

P (β) = −P (β)D, R(β) = −R(β)D, (2.8)

where dual of a matrix A is defined as [27]

AD = −ZAtZ. (2.9)

Remark. The condition of anti-self-duality imposes a much lighter restriction on a diagonal
quaternion than antisymmetry condition on a diagonal matrix element. For example, it leaves
the off-diagonal entry of the diagonal quaternion arbitrary. This is the reason why the odd
skew-orthogonal polynomials are arbitrary upto the addition of a lower even polynomial.

However, starting with
(
xφ

(β)
n , ψ

(β)
m

)
and using (2.6), we get(

Q(β) − Q(β)D
)
P (β) = P (β)

(
Q(β) − Q(β)D

) = 1. (2.10)

As pointed out in the beginning of the section, this essentially means that like the orthogonal
polynomials we do not have a tri-diagonal Jacobi matrix for skew-orthogonal polynomials. It
is this relation that causes the generalized Christoffel–Darboux sum to have a local behaviour
(i.e., the rank has dependence on the measure or weight function). In a sense, this is a major
setback in our hope of defining a 2 × 2 matrix Riemann–Hilbert problem for skew-orthogonal
vectors, similar to that of the orthogonal polynomials. Also from the dependence of P (β)

and R(β) on 2d (the degree of the polynomial V (x)), we can conclude that the ‘size’ of our
q-matrix Riemann–Hilbert problem will depend on d.

From [5], we also have

P (β) + [V ′(Q(β))] = lower, R(β) + [Q(β)V ′(Q(β))] = lower+, (2.11)

where ‘lower’ and ‘lower+’ denote a strictly lower triangular matrix and a lower triangular
matrix with the principal diagonal, respectively.

Having obtained the recursion relations for the skew-orthonormal vectors, we introduce
a convenient notation to express band matrices P (β) and R(β):

n+d∑
m=n−d

P (β)
nm �(β)

m (x) =
d∑

k=−d

ζ
(β)

k (n)�
(β)

n−k(x),

n+d∑
m=n−d

R(β)
nm�(β)

m (x) =
d∑

k=−d

η
(β)

k (n)�
(β)

n−k(x),

(2.12)
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and
n+d∑

m=n−d

R(β)
nm�(β)

m (x) − x

n+d∑
m=n−d

P (β)
nm �(β)

m (x) =
d∑

k=−d

α
(β)

k (n)�
(β)

n−k(x), (2.13)

where

η
(β)

k := diag
(
η

(β)

k (0), . . . , η
(β)

k (n), . . .
)
,

ζ
(β)

k := diag
(
ζ

(β)

k (0), . . . , ζ
(β)

k (n), . . .
)
,

α
(β)

k := diag
(
α

(β)

k (0), . . . , α
(β)

k (n), . . .
)
.

(2.14)

Here, we have suppressed the x-dependence of α
(β)

k (n). This notation will be useful in deriving
the folding function.

More explicitly, with this notation, we can write

P (β) =



ζ
(β)

0 (0) ζ
(β)

−1 (0) · · · · · · ζ
(β)

−d (0) 0 0 · · ·
ζ

(β)

1 (1) ζ
(β)

0 (1) ζ
(β)

−1 (1) · · · ζ
(β)

−d+1(1) ζ
(β)

−d (1) 0 · · ·
ζ

(β)

2 (2) ζ
(β)

1 (2) ζ
(β)

0 (2) · · · ζ
(β)

−d+2(2) ζ
(β)

−d+1(2) ζ
(β)

−d (2) 0

...
...

... · · · · · · · · · · · · . . .

ζ
(β)

d (d) ζ
(β)

d−1(d) · · · · · · ζ
(β)

0 (d) · · · · · · · · ·
0 ζ

(β)

d (d + 1)
. . .

. . .
. . .

. . .
. . . · · ·

0 0 ζ
(β)

d (d + 2)
. . .

. . .
. . .


,

(2.15)

and

R(β) =



η
(β)

0 (0) η
(β)

−1 (0) · · · · · · η
(β)

−d (0) 0 0 · · ·
η

(β)

1 (1) η
(β)

0 (1) η
(β)

−1 (1) · · · η
(β)

−d (1) η
(β)

−d (1) 0 · · ·
η

(β)

2 (2) η
(β)

1 (2) η
(β)

0 (2) · · · η
(β)

−d+1(2) η
(β)

−d (2) η
(β)

−d (2) 0

...
...

... · · · · · · · · · · · · . . .

η
(β)

d (d) η
(β)

d−1(d) · · · · · · η
(β)

0 (d) · · · · · · · · ·
0 η

(β)

d (d + 1)
. . .

. . .
. . .

. . .
. . . · · ·

0 0 η
(β)

d (d + 2)
. . .

. . .
. . .


.

(2.16)

We note that for even V (x), the quaternions of the outermost band are such that

∀n, ζ
(β)

±d (n) ≡
[

0 0(
ζ

(β)

±d (n)
)

10 0

]
, η

(β)

±d (n) ≡
[ (

η
(β)

±d (n)
)

00 0(
η

(β)

±d (n)
)

10

(
η

(β)

±d (n)
)

11

]
.

(2.17)

From (2.6), we get the following quadratic relation between the coefficients
(
ζ

(β)

j , η
(β)

j

)
:

d−1∑
j=l

η
(β)

l−j (n)ζ
(β)

j (n − l + j) −
d−1∑
j=l

ζ
(β)

l−j (n)η
(β)

j (n − l + j) = ζ
(β)

l (n). (2.18)
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This is the compatibility relation for the difference-differential system and will be used in
section 9.

Remark. Here, one can note the basic difference between the properties of bi-orthogonal
polynomials and their skew-orthogonal counterparts. In the skew-orthogonal vectors, the
semi-infinite matrices are symmetric around the principal diagonal. This is not true for the
bi-orthogonal polynomials where the matrices have an asymmetry.

3. The deformation matrix

In this section, we will consider infinitesimal deformation corresponding to changes in uK ,
the coefficient of the potential V (x). Using the definition of the semi-infinite matrices �(β)(x)

and �̂(β)(x) (and �(β)(x), �̂(β)(x)), the deformation matrix can be defined as

∂

∂uK

�(β)(x) = U
(β)

K �(β)(x),
∂

∂uK

�̂(β)(x) = �̂(x)
[
U

(β)

K

]D
, K = 1, . . . , 2d, (3.1)

∂

∂uK

�(β)(x) = U
(β)

K �(β)(x),
∂

∂uK

�̂(β)(x) = �̂(x)
[
U

(β)

K

]D
, K = 1, . . . , 2d. (3.2)

The matrix U
(β)

K is anti-self-dual, i.e.,

U
(β)

K = −[U(β)

K

]D
. (3.3)

Moreover, they satisfy the following relations with P and R (we drop the superscript β

from the matrix Q(β), P (β) and R(β) for simplicity):

∂uKP = [
U

(β)

K , P
]
, ∂uKR = [

U
(β)

K , R
]
. (3.4)

Explicitly, U
(β)

K can be written as

U
(β)

K = − 1

K

(
(QK)+ − (QK)D−

)− 1

2K

(
(QK)0 − (QK)D0

)
, (3.5)

where Q+,Q− denote the upper and lower triangular quaternion matrices while Q0 is the
diagonal quaternion.

Proof. Differentiating equation (1.12) w.r.t. uK and using equations (3.1) and (3.2), we get
equation (3.3). Equation (3.4) follows by interchanging the operators ∂/∂x and x∂/∂x with
∂/∂uK . Finally to prove equation (3.5), we start with the (2×1) normalized quasi-polynomial

�(β)
n (x) := 1√

g
(β)
n

e−V (x)�n(x), n ∈ N, (3.6)

where V (x) is defined in equation (1.2) and

�n(x) =
(

π2n(x)

π2n+1(x)

)
(3.7)

is the monic skew-orthogonal polynomial, defined in equation (1.9). To save cluttering, we
have suppressed the β dependence of πn(x). We have used g

(β)

2n = g
(β)

2n+1. Differentiating with
respect to the deformation parameter, we get

∂uK�(β)
n (x) = − 1

2g
(β)
n

∂uK

(
g(β)

n

)
�(β)

n (x) +
e−V (x)√

g
(β)
n

∂uK�n(x) − xK

K
�(β)

n (x). (3.8)
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Also differentiating the skew-normalization condition, we get

− ∂

∂uK

g(β)
n = −

∫ [
∂uK

(
�(β)

n (x)
)
�̂(β)

n (x) + �(β)
n (x)∂uK�̂(β)

n (x)
]

dx,

= 1

K
[QK + (QK)

D
]n,ng

(β)
n . (3.9)

The diagonal elements have the form(
U

(β)

K

)
n,n

= −
(

QK

K

)
n,n

+
1

2K

(
(QK)n,n + (QK)

D

n,n

)
,

= − 1

2K

[
QK

n,n − (QK)
D

n,n

]
. (3.10)

Thus, we get

U
(β)

K = − 1

K

(
QK

+ − (QK)D−
)− 1

2K

((
QK

0

)− (
QK

0

)D)
. (3.11)

�

Remark. Here, the operation (QK)D− means that the dual is taken first and then the lower
triangular part collected. Also, due to the arbitrariness in the definition of an anti-self-dual
matrix, we may choose the lower off-diagonal element of the diagonal quaternions in U

(β)

K zero.
With this choice, we can remove the arbitrariness in the definition of the odd skew-orthonormal
polynomials.

4. The difference equation

In this section, we introduce a sequence of companion-like matrices A
(β)

N (x) and B
(β)

N (x) of
sizes (2d) × (2d). Using the relations in equations (2.4) and (2.5), we can write

d∑
k=−d

α
(4)
k (n)�

(4)
n−k(x) = 0

d∑
k=−d

α
(1)
k (n)�

(1)
n−k(x) = 0 ∀k ∈ N, (4.1)

and
d∑

k=−d

(
α

(1)
k (n) − δ0,k

)
�

(1)
n−k(x) = 0

d∑
k=−d

(
α

(4)
k (n) − δ0,k

)
�

(4)
n−k(x) = 0 ∀k ∈ N,

(4.2)

we get for N � d

�
(4)
W+1(x) :=


�

(4)
N−d+1(x)

...

...

�
(4)
N+d(x)

 = A
(4)
N (x)


�

(4)
N−d(x)

...

...

�
(4)
N+d−1(x)

 = A
(4)
N (x)�

(4)
W (x), (4.3)

and

�
(1)
W+1(x) :=


�

(1)
N−d+1(x)

...

...

�
(1)
N+d(x)

 = A
(1)
N (x)


�

(1)
N−d(x)

...

...

�
(1)
N+d−1(x)

 = A
(1)
N (x)�

(1)
W (x), (4.4)
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where (suppressing the β dependence of αj (n))

A
(β)

N (x) =


0 1 0 · · · 0

0 0 1
. . . 0

...
...

...
... 1

−(α−d(N))−1αd(N) . . . −(α−d(N))−1(α0(N)) . . . −(α−d(N))−1α−d+1(N)

 .

(4.5)

Remark. For potential V (x) with even degree and ∀n, α±d(n) = R
(β)

n,n±d − xP
(β)

n,n±d and its
inverse has the quaternion structure:

α±d(n) :=
(

a 0
b c

)
; α±d(n)−1 =

( 1
a

0
− b

ac
1
c

)
, a, c �= 0. (4.6)

Hence, they are invertible. This is the criterion for the existence of the skew-orthogonal
polynomials corresponding to even potential. We leave it to the reader to verify that α±d(n) is
non-invertible for potentials with odd degree.

Using this, one can easily see that

�
(4)
W−1(x) :=


�

(4)
N−d−1(x)

...

...

�
(4)
N+d−2(x)

 = (
A

(4)
N−1(x)

)−1


�

(4)
N−d(x)

...

...

�
(4)
N+d−1(x)

 = (
A

(4)
N−1(x)

)−1
�

(4)
W (x), (4.7)

and

�
(1)
W−1(x) :=


�

(1)
N−d−1(x)

...

...

�
(1)
N+d−2(x)

 = (
A

(1)
N−1(x)

)−1


�

(1)
N−d(x)

...

...

�
(1)
N+d−1(x)

 = (
A

(1)
N−1(x)

)−1
�

(1)
W (x), (4.8)

where(
A

(β)

N−1(x)
)−1

=


−(αd(N − 1))−1αd−1(N − 1) . . . −(αd(N − 1))−1(α0(N − 1)) . . . −(αd(N − 1))−1α−d (N − 1)

1 0 · · · · · · 0

0
. . .

. . .
. . . 0

.

.

.
.
.
.

.

.

. 1 0

 .

(4.9)

Similarly, for �(4)(x) and �(1)(x), A(β)(x) is replaced by B(β)(x), where

B
(β)

N (x) =


0 1 0 · · · 0

0 0 1
. . . 0

...
...

...
... 1

−(α−d(N))−1αd(N) . . . −(α−d(N))−1(α0(N) − 1) . . . −(α−d(N))−1α−d+1(N)

 .

(4.10)
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More generally, this ladder operator can be used successively to obtain

�
(β)

W−j (x) = (
A

(β)

N−j (x)
)−1 · · · (A(β)

N−1(x)
)−1

�
(β)

W (x), ∀j ∈ N, (4.11)

and

�
(β)

W+j (x) = A
(β)

N+j−1(x) · · · A(β)

N (x)�
(β)

W (x), ∀j ∈ N. (4.12)

This is the underlying idea behind folding which will be discussed in details in the next section.

5. Folding

Remark. From this point on we focus on the skew-orthogonal vectors �(4)
n (x) (and its dual

�(1)
n (x)), but everything being said can be immediately extended to the vectors �(1)

n (x) (and
hence �(4)

n (x)) by interchanging the rôles of matrices R(β) by R(β) − 1.

The notion of ‘folding’ is the following: we express any quasi-polynomial �
(β)
n (x) (or

�
(β)
n (x)) as a linear combination of 2d fixed consecutive vectors �

(β)

W (x) ≡ �
(4)
N−j (x), j =

d, . . . ,−d + 1, with polynomial coefficients. We now provide a way of computing the folding
function on the same line as done in [20] for bi-orthogonal polynomials.

For a fixed subsequence (or window) W , such that W � {N −d, . . . , N +d −1}, N � d,
we seek to describe the folding of the infinite wave vector �(β)(x) onto the window W by
means of a single quaternion matrix F(x) of size ∞ × (2d) with polynomial entries such that

∀n, �(β)
n (x) =

N+d−1∑
k=N−d

Fn,k(x)�
(β)

k (x). (5.1)

(Similarly for �
(β)
n (x).) In fact, it is more convenient to think of F(x) as a ∞ × ∞ matrix

with only a vertical band of width 2d of nonzero entries (with column index in the range
N − d, . . . , N + d − 1).

Now, we will find an explicit form of the ‘folding function’ in terms of some upper and
lower triangular matrices. We will derive the folding function for �(4)(x) and �(1)(x). For
the folding function for �(4)(x) and �(1)(x) we follow the same procedure and hence state
the result without proof. Note that everything will be written in terms of quaternion matrices.

We will start with a few definitions and identities. We will introduce the shift matrix �

comprising of 2 × 2 blocks of unit matrix:

� =


0 1 0 · · ·
0 0 1 0

0 0 0
. . .

...
...

...
. . .

 , 1 =
(

1 0
0 1

)
, (5.2)

satisfying the relation

�t = �D, (5.3)

i.e., in this case, the transpose is the same as dual. Hence for convenience, for the rest of the
paper, we will denote it as �t .

Let us define the projection matrices:

N∏
:= 1 −

∏
N

,

N∏
M

:=
∏
N

−
∏
M

. (5.4)
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We will also use the following identities:

N+d∏
(�t)

d = (�t)
d

N∏
,

∏
N+d

(�t)
d = (�t)

d
∏
N

,

N+d∏∏
N+d

= 0,

N+d∏∏
N

= 0,

(5.5)
N∏∏

N+d

=
∏
N+d

−
∏
N

=
N+d∏
N

, (�t)
d
�d = 1 −

∏
d

, �d
∏
d

= 0. (5.6)

To find an explicit formula for the matrix F(x), we will use the diagonal band matrices
αj , j = −d, . . . , d, to express R(β) − xP (β):

R
(β)

(x) = R(β) − xP (β) = α−d�
d +

d−1∑
k=1

[α−k�
k] +

d∑
k=0

[αk(�
t)

k], (5.7)

where � is the shift matrix defined in equation (5.2). (For simplicity, we have again suppressed
the β dependence of αj .)

Using the shift matrix in equation (5.7), we get

(�t)
d
α−1

−d [R
(β)

(x)] = (�t)
d
(�)d + (�t)

d
α−1

−d

d−2∑
k=1

[α−k�
k] + (�t)

d
α−1

−d

d∑
k=0

[αk(�
t)

k]. (5.8)

Thus, we can define a semi-infinite matrix G(β), which is strictly lower triangular:

G(β) := 1 −
∏
d

−(�t)
d
α−1

−d [R
(β)

(x)]. (5.9)

Similarly,

�dα−1
d [R

(β)
(x)] = 1 + �dα−1

d

[
d∑

k=1

α−k�
k +

d−1∑
k=0

αk(�
t)

k

]
(5.10)

allows us to define a strictly upper triangular matrix:

C(β) := 1 − �dα−1
d R

(β)
(x). (5.11)

Multiplying equation (5.9) by α−d(�)d on the left-hand side and (1 − G(β))
−1

(�t)
d
α−1

−d

on the right-hand side, we get

1 = R
(β)

(x)
[
(1 − G(β))

−1
(�t)

d
α−1

−d

]
, (5.12)

while for the upper triangular matrix we have the relation

1 = (1 − C(β))
−1

�dα−1
d R

(β)
(x). (5.13)

Thus, the matrix [R(β) − xP (β)] has a left and a right inverse, but they are not the same.
One is upper triangular while the other is lower triangular. However, they satisfy the following
relation:

[R
(β)

(x)]
−1

L = −([R(β)
(x)]

−1

R

)D
. (5.14)

One observes similar features for the matrix (Q − x) in the context of the two-matrix model
studied in [20].
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Following the above procedure, we can also get the upper and lower triangular matrices,
needed to fold �(4)(x) and �(1)(x). They are

G̃(β) := 1 −
∏
d

−(�t)
d
α−1

−d [R
(β)

(x) − 1], C̃(β) := 1 − �dα−1
d [R

(β)
(x) − 1], (5.15)

such that they satisfy

1 = [[R
(β)

(x) − 1]]
[
(1 − G̃(β))

−1
(�t)

d
α−1

−d

]
, 1 = (1 − C̃(β))

−1
�dα−1

d [R
(β)

(x) − 1].

(5.16)

5.1. Upper folding

From the definition [R(4) − xP (4)]�(4)(x) = 0, and equations (5.9) and (5.11), we get

�(4)(x) = C(4)�(4)(x), �(4)(x) =
(

G(4) +
∏
d+1

)
�(4)(x). (5.17)

Similarly, from the definition [R(1) − xP (1)]�(1)(x) = 0, and equations (5.9) and (5.11), we
get

�(1)(x) = C(1)�(1)(x), �(1)(x) =
(

G(1) +
∏
d+1

)
�(1)(x). (5.18)

Given that the quaternion matrix G is strictly lower triangular, we can use equation (5.18)
in an iterative manner to get

N∏
�(4)(x) = (1 − G(4))

−1
N∏

G(4)
∏
N

�(4)(x),

N∏
�(1)(x) = (1 − G(1))

−1
N∏

G(1)
∏
N

�(1)(x).

(5.19)

We will drop the parameter β for simplification. Also since the matrix G has d bands below
the principal diagonal, we have for the folding function

N∏
F(x) = (1 − G)−1

N∏
G
∏
N

, (5.20)

where N = N + d − 1. Simplifying further, we replace G from equation (5.9) to get

N∏
F(x) = (1 − G)−1

N∏[
1 −

∏
d

−α−1
−d(�

t)
d
(R(β) − xP (β))

]∏
N

. (5.21)

Then using the identities obtained before, one gets

N∏
F(x) = −(1 − G)−1

N∏
α−1

−d(�
t)d [R

(β)
(x)]

∏
N

,

= −
(1 − G)−1α−1

−d(�
t)d

N∏
(R

(β)
(x))

∏
N

 ,

= −
N∏
N

−(1 − G)−1α−1
−d(�

t)d

[
R

(β)
(x),

∏
N

]
.
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Thus, we have for the upper folding
N∏

F(x) = −
N∏
N

−(1 − G)−1α−1
−d(�

t)d

[
R

(β)
(x),

∏
N

]
. (5.22)

5.2. Lower folding

Now, we will study the lower folding function. We can write∏
M

�(4)(x) = (1 − C(4))
−1∏

M

C(4)

M∏
�(4)(x),

∏
M

�(1)(x) = (1 − C(1))
−1∏

M

C(1)

M∏
�(1)(x),

(5.23)

where M = N − d. This relation is valid since we are folding finite band matrices. Thus,
F(x) can be written as∏

M

F(x) = (1 − C)−1
∏
M

C

M∏
. (5.24)

Replacing C from equation (5.11) and using the identities, we get∏
M

F(x) = −(1 − C)−1�dα−1
d

∏
N

R
(β)

(x)

M∏
,

= −
N∏
M

+(1 − C)−1�dα−1
d

[
R

(β)
(x),

∏
N

]
,

= −
N∏
M

+(1 − C)−1�dα−1
d

[
R

(β)
(x),

∏
N

]
. (5.25)

5.3. Folding function

The folding function is

F(x) =
∏
M

F(x) +
N∏

F(x) +
N∏
M

, (5.26)

such that we get

F(x) = (
(1 − C)−1�dα−1

d − (1 − G)−1α−1
−d(�

t)
d
)[

R
(β)

(x),
∏

N

]
.

(5.27)

One can easily repeat the above calculations to find the folding function for �(4)(x) and
�(1)(x). It gives

F̃ (x) = (
(1 − C̃)

−1
�dα−1

d − (1 − G̃)
−1

α−1
−d(�

t)
d
)[

R
(β)

(x),
∏

N

]
.

(5.28)

Remark. In the context of bi-orthogonal polynomials, Bergere and Eynard [37] have found a
very elegant expression for the folding function. It would be interesting to see the existence
of such compact expression in the context of skew-orthogonal vectors.



726 S Ghosh

6. Folded deformation matrices

In this section, we will show that a finite subsequence or window of these skew-orthonormal
vectors satisfies a system of PDEs under the infinitesimal change of the deformation parameter.
We will prove for �(4)(x) and �(1)(x). It can be trivially extended to �(4)(x) and �(1)(x).
We state the result.

For convenience, in this section, we will drop the superscript β from Q(β) as it has no
importance on the deformation system. We define the folded deformation matrix:

N∏
M

U
(β)

K F (x) := UN
K

(β)
,

N∏
M

U
(β)

K F̃ (x) := UN
K

(β)
, K = 1, . . . , 2d, (6.1)

where we project a 2d × ∞ quaternion matrix
∏N

M U
(β)

K onto ∞ × 2d quaternion matrices
F(x) and F̃ (x). We have

−KUN
K

(β) =
N∏
M

[[
QK

+ − (QK)D−
]

+
1

2

[
QK

0 − (
QK

0

)D]]
F(x),

=
N∏
M

[[
QK

+ − (QK)D−
]

+
1

2

[
QK

0 − (
QK

0

)D] ]∏
M

F(x) +
N∏

F(x) +
N∏
M

 ,

= −
N∏
M

[
KU

(β)

K

] N∏
M

+
N∏
M

QK

N∏
F(x) −

N∏
M

(QK)D
∏
M

F(x),

= −
N∏
M

[
KU

(β)

K

] N∏
M

−
N∏
M

QK

 N∏
N

+(1 − G)−1(�tα−1
−d

)d [
R

(β)
(x),

∏
N

]
−

N∏
M

(QK)
D

[
−

N∏
M

+(1 − C)−1(α−1
−d�

)d [
R

(β)
(x),

∏
N

]]
,

= −
N∏
M

[
KU

(β)

K

] N∏
M

−
N∏
M

QK

N∏
N

+
N∏
M

(QK)
D

N∏
M

−
N∏
M

[
(QK)(1 − G)−1(�tα−1

−d

)d [
R

(β)
(x),

∏
N

]]

−
N∏
M

[(
QKD)

(1 − C)−1(α−1
−d�

)d [
P (β),

∏
N

]]
,

=
N∏
M

(
QK

0 + (QK
0

)D)
2

N∏
M

−
N∏

N+1

(
QK

0 +
(
QK

0

)D)
2

N∏
N+1

−2xK

 N∏
M

−
N∏
N


−

N∏
N+1

[QK − xK ](R
(β)

(x))
−1

R

[[
R

(β)
(x),

∏
N

]]

−
N∏
M

(QK − xK)
D
(R

(β)
(x))

−1

L

[
R

(β)
(x),

∏
N

]
,
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=
N∏
M

(
QK

0 +
(
QK

0

)D)
2

 N∏
M

−
N∏
N


−

N∏
M

WK(x)

[[
R

(β)
(x),

∏
N

]]
− 2xK

 N∏
M

−
N∏
N

 , (6.2)

where

WK(x) = (QK − xK)(R
(β)

(x))
−1

R + (QK − xK)
D
(R

(β)
(x))

−1

L . (6.3)

Now, if we define in analogy to the Pauli matrix σ3,

�3 :=
 N∏

M

−
N∏
N

 = diag(1 · · · 1︸ ︷︷ ︸
d

,−1 · · · −1︸ ︷︷ ︸
d

), (6.4)

then we may write

−KUN
K

(β) = ∏N
M

(
QK

0 +
(
QK

0

)D)
2 �3 −∏N

M WK(x)
[
R

(β)
(x),

∏
N

]− 2xK�3.

(6.5)

For �(4)(x) and �(1)(x), we have

−KUN
K

(β) = ∏N
M

(
QK

0 +
(
QK

0

)D)
2 �3 −∏N

M WK(x)
[
R

(β)
(x),

∏
N

]− 2xK�3,

(6.6)

where

WK(x) = (QK − xK)(R
(β)

(x) − 1)
−1

R + (QK − xK)
D
(R

(β)
(x) − 1)

−1

L . (6.7)

Thus, we see that these skew-orthogonal vectors satisfy a system of PDEs with respect to the
deformation parameter and is given by

∂

∂uK

�
(4)
W (x) = UN

K

(4)
�

(4)
W (x),

∂

∂uK

�
(1)
W (x) = UN

K

(1)
�

(1)
W (x), (6.8)

∂

∂uK

�
(4)
W (x) = UN

K

(4)
�

(4)
W (x),

∂

∂uK

�
(1)
W (x) = UN

K

(1)
�

(1)
W (x), (6.9)

where �
(β)

W (x) and �
(β)

W (x) are defined in equations (1.26), (1.27).

7. The differential equation

Finally, using the results of the deformation equation, we will derive the ODEs satisfied by
the finite subsequence of skew-orthogonal vectors.

Remark. We will explicitly calculate the differential operator for �(4)(x) and �(4)(x). The
corresponding dual vectors �(1)(x) and �(1)(x), respectively, can be obtained by a simple
transfer of Q(4) �→ Q(1) and hence P (4) �→ P (1) and R(4) �→ R(1). Everything else remains
the same.
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We recall that the differential operator on any of these vectors is given as

d

dx
�(β)(x) = P (β)�(β)(x) = −

[
(V ′(Q))+ − (V ′(Q))

D

− +
1

2

[
(V ′(Q))0 − (V ′(Q))

D

0

]]
�(β)(x)

= −
2d−1∑
K=0

uK+1

[
QK

+ − (QK)
D

− +
1

2

[
QK

0 − (QK)D0
]]

�(β)(x), (7.1)

and similarly for �(β)(x). Since D
(β)

N and D
(β)

N are the folded version of P (β), we observe
that the differential equation satisfied by the finite subsequence of �(4)(x), namely �

(4)
W (x), is

given by

d

dx
�

(4)
W (x) =

N∏
M

P (4)F (x)�(4)(x),

= D
(4)
N �

(4)
W (x), (7.2)

such that with Q := Q(4), P := P (4) and R := R(4) we have

D
(4)
N =

N∏
M

PF(x) = −
N∏
M

[
(V ′(Q))+ − (V ′(Q))

D

− +
1

2

[
(V ′(Q))0 − (V ′(Q))

D

0

]]
F(x),

= −
2d−1∑
K=0

uK+1

N∏
M

[
QK

+ − (QK)
D

− +
1

2

[
QK

0 − (QK)D0
]]

F(x),

= −
2d−1∑
K=0

uK+1
(−KUN

K

(4))
,

= 2V ′(x)�3 +
N∏
M

WN
K (x)

[
R(x),

∏
N

]
. (7.3)

In the last step, we have used the anti-self-dual property of P.
Thus, we have

d
dx

�
(4)
W (x) = ∏N

M PF(x)�(4)(x) = [
2V ′(x)�3 +

∏N
M WN

K (x)
[
R(x),

∏
N

]]
�

(4)
W (x).

(7.4)

where

WN
K (x) = [V ′(Q) − V ′(x)](xP − R)−1

R + [(V ′(Q)) − V ′(x)]D(xP − R)−1
L . (7.5)

Replacing �(4)(x) �→ �(1)(x) and Q(4) �→ Q(1) (and hence P (4) �→ P (1) and R(4) �→ R(1)),
we can obtain the differential equation for the dual vector �(1)(x).

Explicitly, we have

D
(4)
N = 2V ′(x)



1 0 0 · · · 0 0

0
. . . 0 0 0 0

0 0 1 · · · 0 0
0 0 0 −1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 −1


2d×2d
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+WN
K (x)



0 0 0 α−d(M) 0 0

0 0 0
...

. . . 0
0 0 0 α−1(N) · · · α−d(N)

−αd(N + 1) · · · −α1(N + 1) 0 0 0

0
. . .

... 0 0 0
0 0 −αd(N) 0 0 0


. (7.6)

For �
(4)
W (x), we have

d
dx

�
(4)
W (x) = ∏N

M P F̃ (x)�(4)(x) = [
2V ′(x)�3 +

∏N
M WN

K(x)
[
R(x),

∏
N

]]
�

(4)
W (x),

(7.7)

where WN
K (x) is given by

WN
K (x) = [V ′(Q) − V ′(x)](R(x) − 1)

−1
R + [(V ′(Q)) − V ′(x)]D(R(x) − 1)

−1
L . (7.8)

For the dual vector �
(1)
W (x), we follow the same procedure. Replacing �(4)(x) �→ �(1)(x)

and Q(4) �→ Q(1) (and hence P (4) �→ P (1) and R(4) �→ R(1)), we can obtain the ODEs for the
dual vector �(1)(x).

8. Fundamental solutions

We have seen that a finite subsequence of (2 × 1) skew-orthogonal vectors �
(β)

N−k(x)

and �
(β)

N−k(x), k = −d + 1, . . . , d, satisfies a system of differential-difference-deformation
equation. To obtain the fundamental solutions, useful in the Riemann–Hilbert analysis, we
need to look for 2d other solutions. In this section, we will show that the Cauchy-like
transforms of these skew-orthogonal vectors indeed form such solutions.

We will look for some integral representations of these skew-orthogonal vectors as the
possible ‘other solutions’. From the previous experience in orthogonal [10] and bi-orthogonal
polynomials [21], we look for some Cauchy-like transforms �̃

(β)
n (x) and �̃

(β)
n (x) and hope

that at least for sufficiently large n these functions will form the simultaneous solutions for
the system of difference-differential-deformation equations. The remaining solutions can be
obtained by taking the Cauchy-like transforms of certain moment functions fj (x) of order j ,
to be defined below. This trick had been used previously to define Riemann–Hilbert problems
for bi-orthogonal [38] and skew-orthogonal polynomials [39], respectively.

Let us define

fj (x) := exp[V (x)]
∫

R

ε(x − y)yj exp[−V (y)] dy, j = 0, . . . , 2d − 2. (8.1)

We will show that the functions,

�(j,β)
n (x) :=

∫
R

fj (x) − fj (z)

x − z
�(β)

n (z) exp[−V (z)] dz, j = 0, . . . , 2d − 2, (8.2)

�(j,β)
n (x) :=

∫
R

fj (x) − fj (z)

x − z
�(β)

n (z) exp[−V (z)] dz j = 0, . . . , 2d − 2, (8.3)
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and the Cauchy-like transform of the skew-orthogonal vectors,

�̃(β)
n (x) = exp[V (x)]

∫
R

�
(β)
n (z) exp[−V (z)]

(x − z)
dz,

�̃(β)
n (x) = exp[V (x)]

∫
R

�
(β)
n (z) exp[−V (z)]

(x − z)
dz, n ∈ N,

(8.4)

are simultaneous solutions of the differential-difference-deformation equations.

8.1. The Cauchy-like transform

Componentwise, we get using equations (1.19) and (1.20)

ψ̃
(4)

n (x) =
∑

P (4)
n,mφ̃

(4)

m (x), φ̃
(1)

n (x) =
∑

P (1)
n,mψ̃

(1)

m (x). (8.5)

We also get

d

dx
ψ̃

(β)

n (x) = exp[V (x)]
∫

R

V ′(x) − V ′(z)
x − z

ψ(β)
n (z) exp[−V (z)] dz +

∑
P (β)

n,mψ̃
(β)

m (x),

= exp[V (x)]
2d−2∑
m=0

C(β)
m (x)Zm,n +

∑
P (β)

n,mψ̃
(β)

m (x), (8.6)

where V ′(x) = d
dx

V (x) and V ′(z) = d
dz

V (z). Here, we have used exp[−V (z)][{V ′(x) −
V ′(z)}/(x − z)] = ∑2d−2

m=0 C
(β)
m (x)φ

(β)
m (z). Thus, we have

d

dx
ψ̃

(β)

n (x) =
∑

P (β)
n,mψ̃

(β)

m (x), n � 2d. (8.7)

Using equations (8.5) and (8.7), we get

φ̃
′(4)

n (x) = ψ̃
(4)

n (x) =
∑

P (4)
n,mφ̃

(4)

m (x), ψ̃
′(1)

n (x) = 2φ̃
(1)

n (x),

φ̃
′(1)

n (x) =
∑

P (1)
n,mφ̃

(1)

m (x), n � 2d.
(8.8)

Thus, for n � 2d − 1, our chosen functions satisfy the same system of differential equations
as done by the skew-orthogonal vectors φ

(β)
n (x) and ψ

(β)
n (x) (2.1).

Having obtained the relations between φ̃
(β)

(x) and ψ̃
(β)

(x), we will now show that these
functions also satisfy the same recursion relations. We start with

x
d

dx
ψ̃

(β)

n (x) = x
d

dx
exp[V (x)]

∫
R

ψ
(β)
n (z) exp[−V (z)]

(x − z)
dz,

= xV ′(x)ψ̃
(β)

n (x) − exp[V (x)]
∫

R

xV ′(z)
x − z

ψ(β)
n (z) exp[−V (z)] dz

+ exp[V (x)]
∫

R

xψ
(β)
n

′
(z)

x − z
exp[−V (z)] dz.

Now, replacing x → x − z + z on the right-hand side, we get

x
d

dx
ψ̃

(β)

n (x) = exp[V (x)]
∫

R

xV ′(x) − zV ′(z)
x − z

ψ(β)
n (z) exp[−V (z)] dz

+ exp[V (x)]
∫

R

d

dz

(
ψ(β)

n (z) exp[−V (z)]
)

dz

+ exp[V (x)]
∫

R

exp[−V (z)]

x − z

[
z

d

dz

(
ψ(β)

n (z)
)]

dz. (8.9)
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Thus, we have

x
d

dx
ψ̃

(β)

n (x) = exp[V (x)]
2d−1∑
m=0

d(β)
m (x)Zm,n +

∑
R(β)

nm ψ̃
(β)

n (x), β = 1,

= exp[V (x)]
2d−1∑
m=0

d(β)
m (x)Zm,n +

∑(
R(β)

nm − δn,m

)
ψ̃

(β)

n (x), β = 4. (8.10)

Here, we have used exp[−V (z)][{xV ′(x) − zV ′(z)}/(x − z)] = ∑2d−1
m=0 d

(β)
m (x)φ

(β)
m (z). Thus,

for n � 2d, we can see that the first term drops out and hence ψ̃
(β)

n (x) satisfy equations (2.2),
(2.3), respectively.

Similarly, for β = 4, we get for n � 2d

x
d

dx
φ̃

(4)

n (x) = xψ̃
(4)

n (x),

= exp[V (x)]
∫

R

(x − z + z)

x − z
ψ(4)

n (z) exp[−V (z)] dz,

=
∑

R(4)
n,mφ̃

(4)

m (x), (8.11)

where the first term drops off due to the condition n � 2d, d � 1. For β = 1, we differentiate
(8.10) to get

x
d

dx
φ̃

(1)

n (x) =
∑(

R(1)
nm − δn,m

)
φ̃

(1)

n (x), n � 2d. (8.12)

This in turn proves that for n � 2d the Cauchy-like transforms satisfy the same set of recursion
relations (4.1) and (4.2) as done by the skew-orthogonal vectors.

Thus, we prove that our function is compatible under a system of difference-differential
equation, i.e. the solution of the system of differential equation is also a simultaneous solution
of the system of difference equation. We will now show that these solutions are also compatible
with the system of deformation relations, i.e., they are also solutions of the system of PDEs.

We can see that
∂

∂uK

ψ̃
(β)

n (x) = exp[V (x)]

K

∫
R

xK − zK

x − z
ψ(β)

n (z) exp[−V (z)] dz +
∑(

U
β

K

)
nm

ψ̃
(β)

m (x),

= exp[V (x)]
k−1∑
m=0

a(β)
m (x)Zm,n +

∑(
U

β

K

)
n,m

ψ̃
(β)

m (x), (8.13)

where exp[−V (z)][{xK − zK}/(x − z)] = ∑K−1
m=0 a

(β)
m (x)φ

(β)
m (z).

Thus, for n � 2d, ψ̃
(β)

n (x) satisfy equation (3.2). Also, combining equations (8.8), (8.13),
we can see that

φ̃
(β)

n (x) =
∑(

U
β

K

)
n,m

φ̃
(β)

m (x), n � 2d. (8.14)

Thus, for n � 2d, the new-functions φ̃
(β)

n (x) and ψ̃
(β)

n (x) satisfy the system of differential-
difference-deformation equation and hence are mutually compatible.

8.2. The other solutions

In this subsection, we will show that �
(j,β)
n (x) and �

(j,β)
n (x), j = 0, . . . , 2d − 2, are also

solutions to the system of difference-deformation-differential equations. For this, we will
characterize the skew-orthogonal functions φ

(1)
k (x) and ψ

(4)
k (x) (which are polynomials of

degrees k and k + 2d − 1, respectively) through a set of skew-orthogonality relations with
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respect to the functions fj (x). The expressions for these auxiliary solutions were suggested
(for the case β = 1) by the common referee of this paper and [39] using expressions contained
therein and extended by the present author to the case β = 4.

We will start with the identity for a polynomial πj (x) of order j as

πj (x) = exp[V (x)]
d

dx
(xj−2d+1 exp[−V (x)]). (8.15)

There are 2k + 1 orthogonality properties for the skew-orthogonal polynomials of orders 2k

and 2k + 1. Starting with

Zj+2d−1,2k =
∫

R

ψ
(β)

2k πj+2d−1 exp[−V (x)] dx = 0, ∀j = 0, . . . , 2k − 2d + 1, (8.16)

and using equation (8.15), we get the 2k − 2d + 2 conditions for

β = 1, Z2k,j+2d−1 = 2
∫

R

φ
(1)
2k (x)xj exp[−V (x)] dx = 0,

∀j = 0, . . . , 2k − 2d + 1,

(8.17)

and

β = 4, Z2k,j+2d−1 =
∫

R

ψ
′(4)
2k (x)xj exp[−V (x)] dx = 0,

∀j = 0, . . . , 2k − 2d + 1,

(8.18)

while for the remaining 2d − 1 conditions one can have

Z2k,j =
∫

R

∫
R

φ
(1)
2k (x)yj ε(x − y) exp[−V (y)] dx dy = 0, j = 0, . . . , 2d − 2, (8.19)

Zj,2k =
∫

R

∫
R

ψ
(4)
2k (x)yj+2d−1ε(x − y) exp[−V (y)] dx dy = 0, j = 0, . . . , 2d − 2.

(8.20)

Thus, we define the function fj (x):

fj (x) := exp[V (x)]
∫

R

ε(x − y)yj exp[−V (y)] dy, j = 0, . . . , 2d − 2. (8.21)

Remark. Here, we note that for β = 4, without loss of generality, fj (x) can also be defined
as

fj (x) := exp[V (x)]
∫

yj exp[−V (y)] dy + c, j = 0, . . . , 2d − 2, (8.22)

where c is a constant that can be fixed by skew-orthonormalization condition.

Having defined fj (x), we will show that the functions,

�(j,β)
n (x) :=

∫
R

fj (x) − fj (z)

x − z
�(β)

n (z) exp[−V (z)] dz;

�(j,β)
n (x) :=

∫
R

fj (x) − fj (z)

x − z
�(β)

n (z) exp[−V (z)] dz,

(8.23)

satisfy the same system of difference-differential-deformation equations.
Componentwise, using equations (1.19) and (1.20), we get

ψ(j,4)
n (x) =

∑
P (4)

n,mφ(j,4)
m (x), 2φ(j,1)

n (x) =
∑

P (1)
n,mψ(j,1)

m (x). (8.24)
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We also get

d

dx
ψ(j,β)

n (x) = fj (x)

∫
R

V ′(x) − V ′(z)
x − z

ψ(β)
n (z) exp[−V (z)] dz

+ 2
∫

R

xj − zj

x − z
ψ(β)

n (z) exp[−V (z)] dz

+
∫

R

fj (x) − fj (z)

x − z
ψ ′(β)

n (z) exp[−V (z)] dz

= fj (x)

2d−2∑
m=0

C(β)
m (x)Zm,n + 2

j−1∑
m=0

a(β)
m (x)Zm,n +

∑
P (β)

n,mψ(j,β)
m (x). (8.25)

Thus, we have

d

dx
ψ(j,β)

n (x) =
∑

P (β)
n,mψ(j,β)

m (x), n � 2d. (8.26)

Using equations (8.24) and (8.26), we get

φ′(j,4)
n (x) = ψ(j,4)

n (x) =
∑

P (4)
n,mφ(j,4)

m (x), ψ ′(j,1)
n (x) = 2φ(j,1)

n (x),

φ′(j,1)
n (x) =

∑
P (1)

n,mφ(j,1)
m (x), n � 2d.

(8.27)

Thus for n � 2d, our chosen functions satisfy the same system of differential equations as
done by the skew-orthogonal vectors φ

(β)
n (x) and ψ

(β)
n (x) (2.1).

Having obtained the relations between φ(j,β)(x) and ψ(j,β)(x), we will now show that
these functions also satisfy the same recursion relations. We start with

x
d

dx
ψ(j,β)

n (x) = fj (x)

∫
R

(xV ′(x) − zV ′(z))
(x − z)

ψ(β)
n (z) exp[−V (z)] dz

+ 2
∫

R

(xj+1 − zj+1)

(x − z)
ψ(β)

n (z) exp[−V (z)] dz

+
∫

R

d

dz

(
ψ(β)

n (z)(fj (x) − fj (z)) exp[−V (z)]
)

dz

+
∫

R

zψ ′(β)

n (z)
fj (x) − fj (z)

x − z
exp[−V (z)] dz, (8.28)

which for β = 1 gives

x
d

dx
ψ(j,1)

n (x) = fj (x)

2d−1∑
m=0

d(1)
m (x)Zm,n + 2

j∑
m=0

a(1)
m (x)Zm,n +

∑
R(1)

nmψ(j,1)
n (x),

j = 0, . . . , 2d − 2,

(8.29)

and for β = 4 gives

x
d

dx
ψ(j,4)

n (x) = fj (x)

2d−1∑
m=0

d(4)
m (x)Zm,n + 2

j∑
m=0

a(4)
m (x)Zm,n +

∑(
R(4)

nm − δn,m

)
ψ(j,4)

n (x),

j = 0, . . . , 2d − 2.

(8.30)

Thus, for n � 2d, we can see that the first two terms drop out and hence ψ
(j,β)
n (x), like

ψ(B)
n (x), satisfy equations (2.2) and (2.3).
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Similarly, for β = 4, we get for n � 2d

x
d

dx
φ(j,4)

n (x) = xψ(j,4)
n (x),

=
∑

R(4)
n,mφ(j,4)

m (x), (8.31)

where the first term drops off due to the condition n � 2d, d � 1. For β = 1, we differentiate
(8.10) to get

x
d

dx
φ(j,1)

n (x) =
∑(

R(1)
nm − δn,m

)
φ(j,1)

n (x), n � 2d. (8.32)

This in turn proves that for n � 2d these functions satisfy the same set of recursion relations
(4.1) and (4.2) as done by the skew-orthogonal vectors.

Thus, we prove that our function is compatible under a system of difference-differential
equation, i.e. the solution of the system of differential equation is also a simultaneous solution
of the system of difference equation. We will now show that these solutions are also compatible
with the system of deformation relations i.e. they are also solutions of the system of PDEs.

We can see that

∂

∂uK

ψ(j,β)
n (x) = fj (x)

K

∫
R

xK − zK

x − z
ψ(β)

n (z) exp[−V (z)] dz +
∑(

U
β

K

)
nm

ψ(j,β)
m (x),

= fj (x)

k−1∑
m=0

a(β)
m (x)Zm,n +

∑(
U

β

K

)
n,m

ψ(j,β)
m (x). (8.33)

Thus, for n � 2d,ψ
(j,β)
n (x) satisfy equation (3.2). Also, combining equations (8.27), (8.33),

we can see that

φ(j,β)
n (x) =

∑(
U

β

K

)
n,m

φ(j,β)
m (x), n � 2d. (8.34)

Remark. Here, we encounter terms of the form fj+K(x), j = 0, . . . , 2d − 2 and
K = 1, . . . , 2d. For (j + K) > 2d − 2, this term does not contribute, by definition. Also if
we consider only K = 2d, i.e. the leading term in V (x), no such problem arises.

Thus, for n � 2d, the new functions φ
(j,β)
n (x) and ψ

(j,β)
n (x) satisfy the system of

differential-difference-deformation equation and hence are mutually compatible.
Explicitly, we have

�
(β)

[W ] =


�

(β)

N−d(x) �̃
(β)

N−d(x) �
(0,β)

N−d (x) · · · �
(2d−2,β)

N−d (x)

...
...

...
...

...

�
(β)

N+d−1(x) �̃
(β)

N+d−1(x) �
(0,β)

N+d−1(x) · · · �
(2d−2,β)

N+d−1 (x)

 ,

�
(β)

[W ] =


�

(β)

N−d(x) �̃
(β)

N−d(x) �
(0,β)

N−d(x) · · · �
(2d−2,β)

N−d (x)

...
...

...
...

...

�
(β)

N+d−1(x) �̃
(β)

N+d−1(x) �
(0,β)

N+d−1(x) · · · �
(2d−2,β)

N+d−1 (x)

 .

(8.35)

Thus, we have obtained the fundamental solution to the system of differential-difference-
deformation equation, satisfied by the skew-orthogonal vectors. From here, it should be
possible to define the RHP for these skew-orthogonal vectors. It has been obtained in [39] for
β = 1 and can be extended to β = 4.



Skew-orthogonal polynomials, differential systems and random matrix theory 735

9. Compatibility of the finite difference-differential-deformation systems

In the previous section, we have obtained the fundamental system of solutions for the
differential-difference-deformation equation.

In this section, we will provide an alternate proof to show that the recursion relations,
the linear differential equations and the deformation equations are compatible in the sense
that they admit a basis of simultaneous solutions, provided the vectors form a certain algebra
defined by the commutation relations (2.6) and (3.4). In other words, here, we will not use
the explicit form of the fundamental solution to prove the compatibility.

This is the same as saying that the shifts W �→ W +1 in equations (4.3), (4.7), respectively,
are compatible as vector differential-difference systems. This means that there exists a
sequence of fundamental matrix solutions �

(β)

[W](x) and �
(β)

[W](x) which are simultaneous
solutions of

�
(4)
[W+1](x) = A

(4)
N (x)�

(4)
[W](x), (9.1)

d

dx
�

(4)
[W](x) = D

(4)
N (x)�

(4)
[W](x), (9.2)

and

�
(4)
[W+1](x) = B

(4)
N (x)�

(4)
[W](x), (9.3)

d

dx
�

(4)
[W](x) = D

(4)
N (x)�

(4)
[W](x), (9.4)

respectively. The same result holds for β = 1. This means that there exists a sequence of
fundamental matrix solutions satisfying the recursion and differential equations

�
(1)
[W+1](x) = A

(1)
N (x)�

(1)
[W](x), (9.5)

d

dx
�

(1)
[W](x) = D

(1)
N (x)�

(1)
[W](x), (9.6)

and

�
(1)
[W+1](x) = B

(1)
N (x)�

(1)
[W](x), (9.7)

d

dx
�

(1)
[W](x) = D

(1)
N (x)�

(1)
[W](x), (9.8)

respectively.
One must note that the differential equations are also compatible with the shift W �→

W − 1. The proof is exactly similar to the above case.
Similar procedure will be repeated to show the compatibility between the difference-

deformation equation.

9.1. Proof: difference-differential equation

Now we will prove the compatibility of the differential-difference equation for �(4)(x). The
others are exactly similar and hence not repeated. The proof follows on similar line to the one
outlined for bi-orthogonal polynomials [19].

Let us define a finite subsequence (or window) containing functions:

�
(4)

W (x) := [
�

(4)t

N−d(x), . . . , �
(4)t

N+d−1(x)
]t

, N � d, (9.9)
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which is a solution to the differential equation

d

dx
�

(4)

W (x) = D
(4)
N (x)�

(4)

W (x). (9.10)

A glance through the window will confirm that the shift W �−→ W + 1 will introduce one new

function �
(4)

N+d(x) inside the shifted window. Componentwise, let us suppose that they satisfy
the recursion relation

[η−d(m)−xζ−d(m)] �
(4)

m+d(x) = x

d∑
l=−d+1

ζl(m)�
(4)

m−l (x) −
d∑

l=−d+1

ηl(m)�
(4)

m−l (x), m � d.

(9.11)

It is easy to see that the differential equation componentwise reads

d

dx
�

(4)

n (x) =
d∑

l=−d

ζj (n)�
(4)

n−l (x), n = N − d, . . . , N + d − 1, (9.12)

where �
(4)

m (x) outside the window can be expressed in terms of that within the window by
using equation (9.11) recursively. To show compatibility between the shift and differential
operator, we need to show that the newly defined function, which is assumed to satisfy

�
(4)

N+d(x) = (η−d(N))−1

[
x

d∑
l=−d

ζl(N)�
(4)

N−l (x) −
d∑

l=−d+1

ηl(N)�
(4)

N−l (x)

]
, (9.13)

will also satisfy the same differential equation, i.e., we must show that the newly defined

function �
(4)

N+d(x) will also be a solution to the differential equation

d

dx
�

(4)

N+d(x) =
d∑

l=−d

ζj (N + d)�
(4)

N−l+d(x). (9.14)

Remark. One must be careful about the position of the inverse of the quaternion, as, in
general, they do not commute.

Once this is proved, we can argue by induction that �
(4)

N+d+j (x) satisfy the same sort of
differential equation for any j > 1. To do this, we compute

η−d(N)

(
d

dx

)
�

(4)

N+d(x) = d

dx

(
x

d∑
l=−d

ζl(N)�
(4)

N−l (x) −
d∑

l=−d+1

ηl(N)�
(4)

N−l (x)

)

=
d∑

l=−d

ζl(N)�
(4)

N−l (x) +
d∑

l=−d

d∑
j=−d

ζl(N)ηj (N − l)�
(4)

N−l−j (x)

−
d∑

l=−d

d∑
j=−d

ηl(N)ζj (N − l)�
(4)

N−l−j (x)

+ η−d(N)

d∑
l=−d

ζl(N + d)�
(4)

N−l+d(x). (9.15)

From equation (9.15), we can see that in order to prove equation (9.14) we will have to show
that
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d∑
l=−d

ζl�
(4)

N−l (x) +
d∑

l=−d

d∑
j=−d

ζl(N)ηj (N − l)�
(4)

N−l−j (x)

−
d∑

l=−d

d∑
j=−d

ηl(N)ζj (N − l)�
(4)

N−l−j (x) = 0. (9.16)

But this is nothing but a direct consequence of equation (2.18), in terms of its components.
We can repeat the same procedure for the shift W �−→ W − 1. Finally, one can extend this

argument by induction to �
(4)

N+r (x), thereby completing the proof.
We can repeat the same procedure to the sequences

�
(1)

W (x) := [
�

(1)t

N−d(x), . . . , �
(1)t

N+d−1(x)
]t

, N � d, (9.17)

and with some minor modifications to

�
(1)

W (x) := [
�

(1)t

N−d(x), . . . , �
(1)t

N+d−1(x)
]t

, N � d, (9.18)

and

�
(4)

W (x) := [
�

(4)t

N−d(x), . . . , �
(4)t

N+d−1(x)
]t

, N � d, (9.19)

to prove compatibility conditions between the difference-differential equations satisfied by the
skew-orthonormal vectors.

9.2. Proof: difference-deformation equation

We show that these functions are also compatible with the deformation equations. We will
briefly outline the proof. We start with the same finite subsequence (or window) containing
functions

�
(4)

W (x) := [
�

(4)

N−d(x), . . . , �
(4)

N+d−1(x)
]t

, N � d, (9.20)

which, componentwise, will satisfy the PDE

∂

∂uK

�
(4)

n (x) =
K∑

j=0

UK
j (n)�

(4)

n−j (x) n = N − d, . . . , N + d − 1. (9.21)

Then under a shift W �−→ W + 1, we get the new function �
(4)

N+d(x) defined by

(η−d(N))�
(4)

N+d(x) = x

[
d∑

l=−d

ζl(N)�N−d+1(x) −
d∑

l=−d+1

ηl(N)�
(4)

N−l (x)

]
, (9.22)

which should satisfy

∂

∂uK

�
(4)

N+d(x) =
K∑

j=0

UK
j (N + d)�

(4)

N+d−j (x). (9.23)

To do this, we compute(
∂

∂uK

)
(η−d(N))�

(4)

N+d(x) = ∂

∂uK

(
x

[
d∑

l=−d

ζl(N)�
(4)

N−l (x) −
d∑

l=−d+1

ηl(N)�
(4)

N−l (x)

])
,

= x

d∑
l=−d

ζ ′
l (N)�

(4)

N−l (x) + x

d∑
l=−d

K∑
j=0

ζl(N)UK
j (N − l)�

(4)

N−j−l (x)
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−
d∑

j=−d

η′
l(N)�

(4)

N−l (x) −
d∑

l=−d

K∑
j=0

ηl(N)UK
j (N − l)�

(4)

N−j−l (x)

+ η−d(N)

K∑
j=0

UK
j (N + d)�

(4)

N+d−j (x) + η′
−d(N)�

(4)

N+d(x), (9.24)

where ′ denotes ∂
∂uK

. Rearranging the coefficients in equation (9.14), we can see that basically
we will have to show that

0 = x

d∑
l=−d

ζ ′
l (N)�

(4)

N−l (x) + x

d∑
l=−d

K∑
j=0

ζl(N)UK
j (N − l)�

(4)

N−j−l (x)

−
d∑

j=−d

η′
l(N)�

(4)

N−l (x) −
d∑

l=−d

K∑
j=0

ηl(N)UK
j (N − l)�

(4)

N−j−l (x). (9.25)

But this is nothing but a direct consequence of the string equation (3.4), in terms of its
components. Hence, we get equation (9.23).

We can repeat the same procedure for the shift W �−→ W − 1. Finally, one can extend

this argument by induction to �
(4)

N+r (x), thereby completing the proof.

We can repeat the same procedure to the sequences �
(1)

W (x) and with some minor

modifications to �
(1)

W (x) and �
(4)

W (x) to prove compatibility conditions between the difference-
deformation equations satisfied by the skew-orthonormal vectors.

10. Conclusion

In conclusion, we have obtained a system of differential-difference-deformation equation for
a finite subsequence of skew-orthonormal vectors. We see that similar to the orthogonal
and bi-orthogonal polynomials in ordinary space the Cauchy-like transforms of these skew-
orthogonal vectors, of sufficiently high order (to be precise, N � 2d), also satisfy the same
differential-difference-deformation equations in the quaternion space. We also derive an
integral representation of these skew-orthogonal vectors in order to obtain the fundamental
system of solutions for the overdetermined system of ODEs, difference and deformation
equations.

On the other hand, from our already existing knowledge of skew-orthogonal polynomials,
we know that the final results of the RH analysis will have some distinct differences from the
orthogonal polynomials. For example, the zeros of orthogonal polynomials are real, which
are in contrast to that of the skew-orthogonal polynomials [4]. To understand these properties,
one needs to extend the already existing theory for orthogonal polynomials and matrix RHP
[11] to skew-orthogonal polynomials and q-matrix RHP. We wish to come back to this in a
later publication.

Finally, we would like to mention a result of Dyson and Mehta. They showed [40] that
for the circular ensembles ‘the probability distribution of a set of N alternate eigenvalues of a
matrix in the orthogonal ensemble of order 2N is identical with the probability distribution of
the set of all eigenvalues of a matrix in symplectic ensemble of order N’. It would be interesting
to know if something similar exists for ensembles with polynomial potential and the role (if
any) played by the duality relations between different skew-orthogonal vectors of orthogonal
and symplectic ensembles.
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